Ecological functions and significance of animal toxins 2600-OG-EN-EFS
The aim of the course is to familiarize students with the ecological functions of toxins and venoms/poisons produced by animals (mainly vertebrates) and their significance in human life.
Lectures:
Basic definitions and concepts of venom, poison and toxicity (toxin, venom, poison, toxungen, toxicity, venomousness, poisonous, venomous)
Differences between venomous and poisonous animals
Sources of toxicity/venomousness in vertebrates (de novo toxin synthesis, secondary metabolic pathways, sequestration, examples)
Variation in the composition and toxicity of animal venoms and poisons, causes and consequences of this variation (impact of environmental factors: habitat type, geographic range, altitude; impact of individual traits: age, developmental stage, sex, body mass, body condition, examples)
Ecological functions of animal venoms and toxins (prey hunting, food foraging and storage – optimal foraging theory; defense against predators, parasites and microorganisms; inter- and intraspecific competition, social communication, offspring care, examples)
An overview of poisonous and venomous vertebrates (examples of toxic and venomous fish, poisonous amphibians, venomous reptiles, toxic/poisonous birds and venomous mammals)
Costs of venom/poison/toxin production – background and consequences (metabolic costs of venom/poison production, venom optimization hypothesis, venom metering hypothesis, behavioral control of venom/toxin secretion, examples)
Significance of animal venoms and toxins in human life (history of the use of animal toxins by humans, the use of toxins in medicine and pharmacology, the potential use of animals toxins as a biological weapon – bioterrorism)
Całkowity nakład pracy studenta
Efekty uczenia się - wiedza
Efekty uczenia się - umiejętności
Efekty uczenia się - kompetencje społeczne
Metody dydaktyczne
Metody dydaktyczne podające
- wykład informacyjny (konwencjonalny)
- wykład problemowy
Rodzaj przedmiotu
Wymagania wstępne
Koordynatorzy przedmiotu
Kryteria oceniania
Assessment methods:
- obligatory attendance
- activity during classes
- test
Assessment criteria – lecture:
fail - < 51%
satisfactory – 51-60%
satisfactory plus – 61-70%
good – 71-80%
good plus – 81-90%
very good – 91-100%
Praktyki zawodowe
Not applicable
Literatura
Arbuckle, K. 2017. Evolutionary Context of Venom in Animals. In Evolution of Venomous Animals and Their Toxins; Gopalakrishnakone, P., Malhotra A., Eds.; Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6458-3_16
Bücherl, W.; Buckley, E.E.; Deulofeu, V. 1968. Venomous animals and their venoms. Academic Press, New York-London.
Casewell, N.R.; Wüster, W.; Vonk, F.J.; Harrison, R.A.; Fry, B.G. 2013. Complex cocktails: the evolutionary novelty of venoms. Trends Evol. Ecol. 28, 219-229.
Clark, G.C.; Casewell, N.R.; Elliott, C.T.; Harvey, A.L.; Jamieson, A.G.; Strong, P.N.; Turner, A.D. 2019. Friends or foes? Emerging impacts of biological toxins. Trends Biochem. Sci. 44, 365-379.
Dufton, M.J. 1992. Venomous mammals. Pharmacol. Ther. 53, 199-215.
Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; Renjifo, C.; de la Vega, R.C. 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10, 483-511.
Gopalakrishnakone, P. 2015. Biological Toxins and Bioterrorism. Springer Science+Business Media Dordrecht.
Harris, R.J.; Jenner, R.A. 2019. Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System. Toxins 11, 60. doi:10.3390/toxins11020060.
King, G.F. 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11, 1469-1484.
Kowalski, K.; Rychlik, L. 2018. The role of venom in the hunting and hoarding of prey differing in body size by the Eurasian water shrew, Neomys fodiens. J. Mammal. 99, 351–362.
Kowalski, K.; Rychlik, L. 2021. Venom use in eulipotyphlans: An evolutionary and ecological approach. Toxins 13(3), 231.
Kowalski, K.; Marciniak, P.; Rychlik L. 2022. A new, widespread venomous mammal species: hemolytic activity of Sorex araneus
venom is similar to that of Neomys fodiens venom. Zool. Lett. 8, 7.
Ligabue-Braun, R. 2016. Venom use in mammals: Evolutionary aspects. In Evolution of Venomous Animals and Their Toxins, Toxinology; Gopalakrishnakone, P., Malhotra, A., Eds.; Springer Science+Business Media. Dordrecht, Netherlands.
Ligabue-Braun, R.; Carlini, C.R. 2015. Poisonous birds: A timely review. Toxicon 99, 102-108.
Ligabue-Braun, R.; Verli, H.; Carlini, C.R. 2012. Venomous mammals: A review. Toxicon 59, 680-695.
McCue, M. 2006. Cost of producing venom in three North American pitviper species. Copeia 2006, 818-825.
Mebs, D. 2001. Toxicity in animals. Trends in evolution? Toxicon 39, 87-96.
Mebs, D. 2002. Venomous and poisonous animals. Medpharm, Stuttgart.
Morgenstern, D.; King, G.F. 2013. The venom optimization hypothesis revisited. Toxicon 63, 120-128.
Nelsen, D.R.; Nisani, Z.; Cooper, A.M.; Fox, G.A.; Gren, E.C.K.; Corbit, A.G.; Hayes, W.K. 2014. Poisons, toxungens, and venoms: redefining and classifying toxic biological secretions and the organisms that employ them. Biol. Rev. 89, 450-465.
Pintor, A.F.V.; Winter, K.L.; Krockenberger, A.K.; Seymour, J.E. 2011. Venom physiology and composition in a litter of Common Death Adders (Acanthopis antarcticus) and their parents. Toxicon 57, 68-75.
Pucek, M. 1968. Chemistry and pharmacology of insectivore venoms. In Venomous animals and their venoms; Bücherl, W., Buckley, E.E., Deulofeu, V., Eds.; Academic Press, New York, pp. 43-50.
Rode-Margono, J.E.; Nekaris, K.A.I. 2015. Cabinet of curiosities: Venom systems and their ecological function in mammals, with a focus on primates. Toxins 7, 2639-2658.
Saporito, R.A.; Donnelly, M.A.; Spande, T.F.; Garraffo, H.M. 2012. A review of chemical ecology in poison frogs. Chemoecology 22, 159-168.
Sunagar, K.; Morgenstern, D.; Reitzel, A.M.; Moran, Y. 2016. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J. Proteom. 135, 62-72.
Yuan, H., Ma, Q., Ye, L., Piao, G. 2016, The traditional medicine and modern medicine from natural products. Molecules 21, 559, doi:10.3390/molecules21050559.
Zhan, X., Wu, H., Wu, H., Wang, R., Luo, C., Gao, B., Chen, Z., Li, Q. 2020. Metabolites from Bufo gargarizans (Cantor, 1842): a review of traditional uses, pharmacological activity, toxicity and quality control. J. Ethnopharmacol. 246, 112178.
Zhang, Y. 2015. Why do we study animal toxins? Zool. Res. 36, 183-222.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: