Genetics and Evolution 2600-GNE-GC-1-S2
Lecture:
Historical and philosophical foundation of modern evolutionary theory
Basics in phylogenetic systematics
Basics in palaeontology, history of life on earth, patterns of anagensis and cladogenesis
Basics in molecular evolution
Population genetics and pattern and processes of selection and adaptation
Mechanisms of speciation
Rise of biological complexity
Evolution of Man
Laboratory classes:
1. Basic concepts of genetics.
Students will learn several concepts including genotype, phenotype, gene, allele, gametes, crossing over, homozygous, and heterozygous. Students will learn how to write genetic crosses properly.
2. The structure, characteristics, and replication of DNA. Bacteria transformation.
During the class, the structure of DNA will be thoroughly discussed. The process of DNA replication and the relation between DNA replication and inheritance will be explained. The bacteria transformation using the heat-shock method will be performed.
3. Mutagens and mutagenesis. Drosophila melanogaster – the object of genetic research.
The mechanisms of mutation appearing and the mechanisms of the action of mutagens will be discussed. Students will learn culturing techniques for D. melanogaster, will learn techniques to manipulate flies, and prepare crosses between flies.
4. DNA repair. The Ames test.
The mechanisms of DNA repair in Procaryota and Eucaryota will be discussed. Students will learn how to assess the mutagenic potential of chemical compounds via the Ames test.
5. Mendel’s laws and variations of Mendel’s laws.
The principles and mechanisms of the inheritance of traits and genes in individuals from one generation to the next will be presented. Students will learn how based on experimental data conclude heredity patterns. Students will learn how to plan experiments allowing them to verify whether a gene is transmitted to the next generation according to Mendelian or non-Mendelian inheritance patterns.
6. Polygenic inheritance.
Students will learn about traits that are controlled by more than one gene (usually several genes) like height, weight, etc. Students will learn how based on the experimental data verify whether a trait is or is not controlled by more than one gene and if a trait is a polygenic trait how the number of genes could be estimated.
7. Population genetics.
During the class population genetics as a study of the genetic composition of populations, including changes in genotype and phenotype frequency in response to the processes of natural selection, mutation, gene flow, and genetic drift will be discussed. Students will learn how to use the Hardy-Weinberg law to estimate the genotype and phenotype frequencies in a population and how to assess the genetic equilibrium of the population.
8. Linkage, recombination, and gene mapping.
Students will learn about gene linkage and the recombination process. The impact of those processes on genetic variation will be discussed. During the class, students will learn how to verify based on the experimental data whether two or more genes are linked and how to calculate the distance between genes (prepare a gene map).
9. Evolutionary genetics.
During the discussion, students will try to incorporate the knowledge obtained during the course in understanding the evolution at the molecular level. The relationship between the evolution and (i) the structure of DNA and DNA replication, (ii) mutations, (iii) the transmission of the genes from generation to generation, (iv) alleles distribution in the population, and (v) recombination will be thoroughly discussed.
Całkowity nakład pracy studenta
Efekty uczenia się - wiedza
Efekty uczenia się - umiejętności
Efekty uczenia się - kompetencje społeczne
Metody dydaktyczne
Metody dydaktyczne eksponujące
Metody dydaktyczne podające
- wykład informacyjny (konwencjonalny)
Metody dydaktyczne poszukujące
- klasyczna metoda problemowa
- obserwacji
- ćwiczeniowa
Rodzaj przedmiotu
Wymagania wstępne
Koordynatorzy przedmiotu
W cyklu 2022/23Z: | W cyklu 2023/24Z: | W cyklu 2025/26Z: | W cyklu 2024/25Z: |
Kryteria oceniania
Assessment methods:
- presence
- activity
Exam:
61%-70%: 3
71%-75%: 3+
76%-85%: 4
86%-90%: 4+
>90% : 5
Laboratory classes – the achievement of all learning outcomes will be verified via the final test with single and multiple-choice questions.
Grades based on the number of points from the test: 100-92% very good (5,0), 91-82% good plus (4,5), 81-72% good (4,0), 71-62% satisfactory plus (3,5), 61-55% satisfactory (3,0), 54-0% unsatisfactory (2,0).
Praktyki zawodowe
not applicable
Literatura
Lecture:
Futuyma D. Evolution, Sinauer, 3rd edition 2013
Additional literature is given during the lectures.
Laboratory classes:
C. B. Powar, Genetics vol. 1, Himalaya Publishing House, 2007
K. B. Ahluwalia, Genetics, New Age International Ltd., 2009
M. P. Arora, G. S. Sandhu, Genetics, Global Media, 2008
A. Wanjie, The Basics of Genetics, Rosen Publishing Group, 2013
H. Fletcher, I. Hickey, Genetics, CRC Press LLC, 2012
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: