Prowadzony w
cyklu:
2025/26L
Kod ISCED: 0612
Punkty ECTS:
3
Język:
angielski
Organizowany przez:
Wydział Fizyki, Astronomii i Informatyki Stosowanej
Data science with R, RMarkdown, RStudio, Git and GitHub 0800-OG-DATAR
Jeszcze nie wprowadzono opisu dla tego przedmiotu...
Całkowity nakład pracy studenta
(po angielsku) Contact hours with teacher (obligatory: 30 hrs, voluntary: 10 hrs):
- participation in laboratories – 30 hrs
- consultations – 10 hrs
Self-study hours (35 hrs):
- preparation for the laboratory session (watching the provided video and reading the supplied material) – 15 hrs
- writing and reviewing assignments (projects, reports, etc.) – 20 hrs
Altogether: 75 hrs (3 ECTS)
Efekty uczenia się - wiedza
(po angielsku) Student
W1: has comprehensive knowledge of the data analysis lifecycle, including preprocessing, exploration, and reporting.
W2: understands advanced data transformation and visualization techniques and their impact on analysis outcomes.
W3: has a solid understanding of building, validating, and interpreting statistical models.
W4: understands how to write robust, efficient, and reproducible scripts using RMarkdown and integrated tools.
W5: recognizes the importance of collaboration and communication in data science, leveraging version control tools such as Git and GitHub.
Efekty uczenia się - umiejętności
(po angielsku) Student
U1: is proficient in importing, cleaning, and transforming diverse datasets, including spatial and textual data.
U2: can design, implement, and evaluate statistical models to solve real-world problems.
U3: is capable of creating fully reproducible workflows using RMarkdown, ensuring transparency in analyses.
U4: is skilled in using Git and GitHub for collaborative data science projects, including managing conflicts and maintaining code quality. U5: can critically assess and incorporate ethical considerations into data analysis and communication processes.
U6: is capable of conducting peer reviews of assignments through GitHub Pull Requests, fostering critical thinking and collaboration.
Efekty uczenia się - kompetencje społeczne
(po angielsku) Student
K1: understands the significance of ethical considerations in data analysis.
K2: recognizes the importance of reproducibility and transparency in scientific research.
K3: is prepared to collaborate effectively using version control systems.
K4: is aware of the impact of data visualization on data interpretation. K5: values continuous learning and staying updated with advancements in data science tools and methodologies.
Metody dydaktyczne
(po angielsku) Expository teaching methods:
- online materials (e.g., video lectures, reading materials)
Active teaching methods:
- practical exercises
- group projects
- interactive tutorials
- peer reviewing
Wymagania wstępne
(po angielsku) - Basic understanding of statistics.
- Familiarity with at least one programming language is advantageous but not mandatory.
Koordynatorzy przedmiotu
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: