Mechanika klasyczna 0800-MEKL
W ramach wykładu omówione będą podstawowe formalizmy mechaniki klasycznej, ich zalety i wady w zastosowaniach do różnych konkretnych problemów. W szczególności, studenci poznają:
1.Przegląd mechaniki Newtona,
- Zasady dynamiki
- Układy nieinercjalne,
- Zagadnienie 2 ciał.
2.Ruch nieswobodny - więzy,
3.Zmienne uogólnione,
4.Równania Lagrange'a I i II rodzaju,
5 .Formalizm kanoniczny,
- Równania Hamiltona,
- Nawiasy Poissona,
- Transformacje kanoniczne,
- Równanie Hamiltona-Jacobiego,
6. Sformułowanie praw mechaniki przez całkowe zasady wariacyjne,
7. Twierdzenie Noether,
8 .Elementy dynamiki bryły sztywnej,
9. Elementy teorii płynów,
- Metoda Eulera,
- Metoda Lagrange'a,
- Ruchy potencjalne,
- Wprowadzenie do teorii wirów,
Ćwiczenia:
Rozwiązywanie problemów ilustrujących zagadnienia omawiane na wykładzie.
Całkowity nakład pracy studenta
Efekty uczenia się - wiedza
Efekty uczenia się - umiejętności
Efekty uczenia się - kompetencje społeczne
Metody dydaktyczne
Metody dydaktyczne podające
Metody dydaktyczne poszukujące
Rodzaj przedmiotu
Wymagania wstępne
Koordynatorzy przedmiotu
W cyklu 2022/23Z: | W cyklu 2025/26Z: | W cyklu 2023/24Z: | W cyklu 2024/25Z: |
Kryteria oceniania
Egzamin pisemny z treści objętych wykładem.
50-60% - dostateczny ,
60-70% - dostateczny plus,
70-80% - dobry,
80-90% - dobry plus
90-100% -bardzo dobry
Zaliczenie ćwiczeń na podstawie kolokwium, prac domowych i aktywności na ćwiczeniach.
W okresie zajęć zdalnych z powodu pandemii egzamin i zaliczenie odbywały się ustnie w trybie zdalnym.
W roku 2023/24 z powodu małej liczby studentów egzamin i zaliczenie odbywały się ustnie.
Praktyki zawodowe
brak praktyk
Literatura
1. W. Rubinowicz, W. Królikowski, Mechanika teoretyczna, PWN, Warszawa, 1995.
2. G. Białkowski, Mechanika klasyczna, PWN, Warszawa, 1975.
3L. D. Landau, J. M. Lifszyc, Mechanika, PWN, Warszawa, 2006.
4. I. I. Olchowski, Mechanika teoretyczna, PWN Warszawa 1978.
5. K Stefański, Wstęp do mechaniki klasycznej, PWN Warszawa, 1999.
5. R. S. Ingarden, A. Jamiołkowski, Mechanika klasyczna, PWN Warszawa, Poznań, 1980.
6. W. I. Arnold, Metody matematyczne mechaniki klasycznej, PWN, Warszawa, 1981.
7. J. Bukowski, P. Kijkowski, Kurs mechaniki płynów, PWN, Warszawa, 1980.
8. B. Średniawa, J. Weyssenhoff, Mechanika środowisk rozciągłych, PWN Warszawa, Kraków, 1969.
L. D. Landau E. M. Lifszyc, Hydrodynamika, PWN Warszawa 1994.
Więcej informacji
Dodatkowe informacje (np. o kalendarzu rejestracji, prowadzących zajęcia, lokalizacji i terminach zajęć) mogą być dostępne w serwisie USOSweb: