(in Polish) Representation theory of finite dimensional algebras I 1000-M2RepTheory1
Module I
Algebras, modules and categories
1. Terminology and notations
2. Categories and functors
3. Simple modules, radical and semisimple algebras
4. Direct sum decompositions
5. Projective modules and injective modules
6. Basic algebras and embeddings of module categories
7. Grothendieck group
8. Fibered product and fibered sum of modules
9. Extensions of finite dimensional modules
Passing the course: oral examination.
Class dates: Tuesdays 2:15 - 4:00 p.m., room S2, Faculty of Mathematics and Computer Science, Chopina 12/18
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Expository teaching methods
Prerequisites
Course coordinators
Bibliography
Basic literature:
I. Assem, D. Simson and A. Skowroński,
"Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory", London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006.
A. Skowroński, K. Yamagata, "Frobenius algebras. I: Basic representation theory", EMS Textbooks in Mathematics. Zürich: European Mathematical Society (EMS), 2011.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: