Quantum Information 0800-PA-QUANTINF
1. Theory of convex sets, sets of classical and quantum states:
a) convex sets, convex combinations, extreaml points, Krein-Millmann theorem, Caratheodory theorem
b) setz of classical and quantum states, inscribed and circumscribed ball,
c) qubit, Bloch ball, pure states vs. state vectors, global phase, first Hopf bundle
d) decomposition of mixed states into combinations of pure states
2) Consequences of non-commutativity
a) uncertainty principle, Shannon entropy, and Maasen-Uffink formulation
b) Mutuallu unbiased bases and methods of construction
c) random access codes
3. Quantum mechanics of composed and open systems:
a) tensor product and partial trace
b) separable and entangled states
c) quantum channels
d) generalised measurements
4. Dilation theorems
a) purification of a mixed state
b) realisation of a quantum channel as an effect of unitary evolution on a larger system
c) realisation of a generalised measurement as a projective measurement on a larger system
5. Theory of quantum channels
a) vectorisation and realignment
b) finding a KRauss representation of a given quantum channel
c) qubit channels, bistochastic channels, random unitary, Pauli channels
6. Theory of generalised measurements
a) distinguishing quantum states, Hellstrom theory
b) SIC POVMs
7. Optical systems in polarisation domain
a) quantum gates
b) realisation of POVMs
8. Non-clonning, BB84
9. Hidden variables space, Bell inequalities, non-signaling
10. Teleportation, local filtering.
11. Measures of entanglement
a) distillation of entanglement
b) EOF and EOD, bound entanglement
c) concurrence, negativity
d) relations between properties: PPT, distilability, non-locality
12. Entanlement detection
a) partial transposition criterion
b) positive maps criterion
c) entanglement witnesses and Jamiołkowski isomorphism
d) Choi map
e) realignment criterion
13. Shor algorithm of factorisation.
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Teaching methods
Expository teaching methods
- problem-based lecture
Online teaching methods
Prerequisites
Course coordinators
Assessment criteria
Written exam (verification of the learning outcomes W1, W2, W3, W4, U1 and U4), evaluation criteria:
- 1: 0-50 % points
- 3: 50-60 % points
- 3+: 60-70 % points
- 4: 70-80 % points
- 4+: 80-90 % points
- 5: 90-100 % points
Practical placement
none
Bibliography
Primary literature:
1. Books:
- C. C. Gerry, P. L. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, 2004.
- N. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge, 2006.
2. Review articles:
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys. 81, 1301 (2009).
- M. D. Eisaman, J. Fan, A. Migdall, S. V. Polyakov, Single-photon sources and detectors, Rev. Sci. Instrum. 82, 071101 (2011).
- S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, S. L. Braunstein, Advances in quantum teleportation, Nat. Photonics 9, 641 (2015).
- N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Rev. Mod. Phys. 83, 33 (2011).
Supplemental literature: a numer of scientific articles presented by the tutor during the lecture.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: