Laser Optics 0800-OPTLAS
Lecture:
1. Measurements of electromagnetic radiation,
1.1 a blackbody radiation.
1.2 Radiometry.
1.2 Photometry.
2. Electromagnetic waves in homogeneous optical media.
2.1 Fundamentals: the plane wave.
2.2 Phenomena at boundaries - Fresnel equations.
3. Electromagnetic waves in inhomogeneous, linear media.
3.1 Wave equation - the eikonal.
3.2 Optical approximation.
3.3 The eikonal equation.
3.4 The Fermat principle.
3.5 The differential (vector) equation of light rays.
3.6 Vector or optical ray curvature, refraction law.
4. Linear optical imaging in matrix formalism
5. Laser resonator and its stability conditions
6. Gaussian Beams
6.1 Properties
6.2 The ABCD Propagation Law (the Kogelnik theorem) for Gaussian Beams
6.3 Gaussian modes of a spherical resonator
7. Modes of active slab waveguide
8. Health and safety rules for work with lasers
Exploratory:
Exploratory teaching will be strictly aligned with the lecture. Problems from the following areas will be solved:
1. Radiometry & photometry
2. Applications of Fresnel equations
3. Applications of differential ray equations to gradient media
4. Derivation of rays in optical systems with matrix optics.
Additionally this course is directly linked with the following experiments at Optoelectronics laboratory:
1. Photometry, spectrophotometry
2. Examination of Gaussian Beams
3. Derivation of the ABCD matrix of an optical system
4. Examination of an optical waveguide
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Teaching methods
Expository teaching methods
Exploratory teaching methods
Online teaching methods
Type of course
Prerequisites
Course coordinators
Term 2021/22Z: | Term 2022/23Z: | Term 2023/24Z: | Term 2024/25Z: |
Assessment criteria
a. exploratory teaching: activity, colloquia, assessing competences:
technical physics: 2st: U01 - U04
Physics, 2nd st; U01..U04
ndst -(<50%)
dst- (>50 %)
dst plus- (>60%)
db- pkt (>70%)
db plus- pkt (>80%)
bdb- pkt (>90%)
b. lecture: oral exam assessing competences: W01 - W11, K01, K02
ndst - (<50%)
dst- (>50 %)
dst plus- … pkt (>60%)
db- (>70%)
db plus- (>80%)
bdb- (>90%)
List of subjects:
1. Radiometry
2. Photometry
3. A blackbody radiation (Planck formula)
4. Properties of plane and spherical electromagnetic wave
5. Fresnel formulas incl. specific cases (formulas will be given)
6. An eikonal - definition, properties, equation of eikonal
7. The Fermat principle - examples (descriptive)
8. The differential (vector) equation of light rays.
9. Fundamental laws of matrix (ABCD) representation of ray tracing
10. Cardinal points of optical system
11. Interpretation of zeros in ABCD matrics
12. Transformation of spherical wave in ABCD optics
13. Transformation of Gaussian Beam in ABCD optics.
14. Basic properties of a Gaussian Beam
15. Modes of a higher order of a Gaussian beam
16. Stability condition of a laser resonator
17. Gaussian modes of an optical resonator
18. Longitudinal Gaussian modes of an optical resonator
19. Modes of a slab resonator
20. Real versus active waveguide
21. Safety classes of lasers.
Practical placement
Not concerns
Bibliography
Literatura podstawowa:
1. M. Born, E. Wolf, Principles of Optics.
2. R. Jóźwicki, Optyka instrumentalna.
3. J. T. Verdeyen, Laser Electronics.
4. A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics, (tłumaczenie na rosyjski: Wwedenije w matrithnuju optiku)
5. Glen D. Gillen, Katharina Gillen, and Shekhar Guha, Light Propagation in Linear Optical media
6. B. Ziętek, Lasery
7. B. Ziętek, Optoelektronika
8. http://www.phys.uni.torun.pl/~ptarg > dydaktyka >Optyka laserowa
Literatura uzupełniająca:
1. instrukcje do zadań Pracowni optoelektroniki i fizyki laserów: https://wwwold.fizyka.umk.pl/wfaiis/?q=node/228
Notes
Term 2021/22Z:
None |
Term 2022/23Z:
None |
Term 2023/24Z:
None |
Term 2024/25Z:
None |
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: