Discrete Mathematics 0800-MDYS
Integer division, relation of divisibily
The Euclid algorithm for fingind the GCD of integers, proof of its validity and estimationg the time complexity
The extended Euclid algorithm
Prime numbers, composite numbers and relatively prime numbers
Factorisation and the Fundamental theorem of arithmetic
The density of primes
The sieve of Eratostenes
Congruence relation, residue rings
The Euler function and the small Fermat's theorem
Rings of pulynomials, residue rings of polynomials, construction of finite fields
Linear congruences, Chinese remainder theorem
Error correcting codes, redundant coding, Hamming distance
The Hamming and the Singleton bound
Cyclic codes
Reed-Solomon codes
Groups, subgroups, group homomorphisms, the kernel and the image
Action of a group on a set. Orbits and stabilisers
Cosets, normal divisor, quotient group, Lagrange theorem
Classification of finite groups, the Sylow theorem
Cayley theorem
The multiplicative group of a ring, discrete logarithm
Fermat algorithm, Pollards p-1 method, exponentation by squaring, the Polladrs. $rho$ method
Leibnitz's test, Miller's-Rabin's test, pseudoprime and strong pseudoprime numbers, Lucas test
Gauss method of finding the rank of an element
Methods of finding the discrete logarithm - Shanks, $rho$ Pollard's and Pohling's-Hellmans
El-Gammal cryptosystem - encryption and subscription
RSA cryptosystem - encryption and subscription
Projective space, non-singular ellptic curves and their group structure. The Hasse's theorem
El-Gammal cryptosystem over an elliptic curve
Simple and directed graphs, graph isomorphisms, thr group of a graph automorphisms
Trees
The Euler problem and the Euler theorem, Fleury's theorem
Hamiltom graphs, Ore theorem
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Teaching methods
Expository teaching methods
Exploratory teaching methods
Type of course
Prerequisites
Course coordinators
Assessment criteria
Exam, 8 questions, the list of questions will be published before exam on the lecturer's web page
Bibliography
Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 2005
J. Jaworski, Z. Palka, J. Szymański Matematyka Dyskretna dla Informatyków
A. Szepietowski Matematyka Dyskretna
S. G. Krantz Discrete Mathematics Demystified
Kenneth A. Rosen Handbook of discrete and combinatorial mathematics
Władysław Narkiewicz Teoria Liczb PWN 2003
Jerzy Rutkowski Algebra abstrakcyjna w zadaniach PWN 2006
A. I. Kostrykin Wstęp do algebry PWN 2005
A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010
N. Koblitz Wykład z teorii liczb i kryptografii WNT Warszawa 2006
N. Koblitz Algebraiczne aspekty kryptografii WNT Warszawa 2000
R.J. Wilson Wprowadzenie do teorii grafów
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: