Experimental Nanoscience 0800-M-EXNAN
General introduction – the Caveman
Fabrication of nanostructures, structural and chemical
characterization
Optical characterization of nanostructures: absorption,
luminescence, related topics
Detection of light, fluorescence microscopy
Single-molecule microscopy and spectroscopy
Interactions at the nanoscale: energy transfer and
plasmonic interactions – examples and optical signatures
Plasmonic photosynthesis
Graphene-based hybrid nanostructures
Propagation of energy in plasmonic networks
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Expository teaching methods
- problem-based lecture
Type of course
Prerequisites
Course coordinators
Assessment criteria
Oral examination
Bibliography
Lecture materials and research papers will form the base for the lecture. Extended discussions can be found in the following monographs:
C. Weisbuch, B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications, Academic Press, Boston, 1991.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Les Ulis, 1988.
D. Bimberg, M. Grundmann, N. N. Ledentsov, Quantum Dot Heterostructures, John Willey & Sons, 1999.
J. R. Lakowicz, Principles Of Fluorescence Spectroscopy. Kluwer Academic/Plenum Publishers, New York, 1999.
R. Rigler, M. Orrit, Th. Basché (Eds.) Single Molecule Spectroscopy-Nobel Conference Lectures, Springer, Berlin, 2001.
Th. Basche, W. E. Moerner, M. Orrit, U. P. Wild (Eds.) Single Molecule Optical Detection, Imaging and Spectroscopy, VCH: Weinheim, 1997.
S. A. Maier, Plasmonics: Fundamentals And Applications, Springer Berlin, 2007.
L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, 2006
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: