Introduction to the nanomaterials chemistry 0600-S1-SP/W-WChN
Program content of the lecture:
1. Methods - nanotechnology and "green chemistry".
2. Nanomaterials: classification, types, similarities, differences.
3. History of obtaining nanomaterials and development of nanotechnology.
4. Presentation of the historical background and factors determining the development of nanotechnology.
5. Synthesis of nanomaterials.
6. Methods and techniques of their characterization.
7. Defects. Non-ideal structure.
8. Chemical modifications - functionalization.
9. Biological activity. Toxicity.
10. Use of nanomaterials: photochemistry, photovoltaics, electrochemistry, energy storage, nanocatalysis, optoelectronics, nanomedicine.
11. Answer the questions: What's next? Is there a further nanotechnology revolution awaiting us?
Laboratory curriculum:
1. Synthesis and study of physicochemical properties of hydroxyapatites
2. Obtaining silver nanoparticles by chemical reduction
3. Chemical modification of carbon nanotubes
4. Test methods for surface oxygen groups - determination of the surface chemistry of carbon materials by the Boehm method
5. Synthesis of biocatalysts - catalase immobilization on CNT
6. XPS studies of the surface chemistry of carbon nanomaterials - interpretation of XPS spectra
7. Test methods for surface oxygen groups - TPD
8. Interpretation of FTIR spectra of modified carbon nanomaterials
9. Synthesis of nanocrystalline TiO2 powders by sol-gel method
10. Catalytic activity of carbon nanomaterials - H2O2 decomposition
11. Microwave synthesis of ZnO nanoparticles
12. Tanning filters and ZnO nanoparticles
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Teaching methods
Observation/demonstration teaching methods
Expository teaching methods
- informative (conventional) lecture
- description
- discussion
- problem-based lecture
Exploratory teaching methods
- laboratory
- observation
- practical
Type of course
Prerequisites
Course coordinators
Assessment criteria
evaluating methods:
lecture - W1-W5, W7-W10
laboratory – W5-W7, W9, W10, K1-K9
assessment criteria:
Lecture:
Block assessment with the following weights:
- 50% exam
- 50 % evaluation of laboratory
Threshold required to assess:
- dostateczną: 50 -60 %
- dostateczną plus: 61 – 65 %
- dobrą: 66 – 75 %
- dobrą plus: 76 – 80 %
- bardzo dobrą: 81-100 %
Laboratory:
Grading based on:
- prepared reports based on the results of independently conducted tasks
Threshold required to assess:
- dostateczną: 50 -60 %
- dostateczną plus: 61 – 65 %
- dobrą: 66 – 75 %
- dobrą plus: 76 – 80 %
- bardzo dobrą: 81-100 %
Bibliography
Literatura podstawowa:
1. I.J. Nejmark, Syntetyczne adsorbenty mineralne, WNT, Warszawa, 1988.
2. Z. Sarbak, Nieorganiczne materiały nanoporowate, Wydawnictwo Naukowe UAM, Poznań, 2009.
3. Z. Sarbak, Adsorpcja i adsorbenty: teoria i zastosowania, Wydawnictwo Naukowe UAM, Poznań, 2000.
4. R.C. Bansal, M. Goyal, Adsorpcja na węglu aktywnym, WNT, Warszawa, 2009.
5. Z. Sarbak, Metody instrumentalne w badaniach adsorbentów i katalizatorów, Wydawnictwo Naukowe UAM, Poznań, 2005.
6. M. Ziółek, I. Nowak, Kataliza heterogeniczna. Wybrane zagadnienia, Wydawnictwo Naukowe UAM, Poznań, 1999.
7. B. Grzybowska-Świerkosz, Elementy katalizy heterogenicznej, PWN, Warszawa, 1993.
8. B. C. Gates, Catalytic Chemistry, John Wiley & Sons, Inc., New York, 1992.
9. W. Przygocki, Fulereny i nanorurki, Wyd, Naukowo-Techniczne, 2001.
10. A. Huczko, Nanorurki węglowe – czarne diamenty XXI wieku, BEL, 2004.
11. P.J.F. Harris, Carbon Nanotube Science: Synthesis, Properties and Applications, Cambridge University Press, 2009
Literatura uzupełniająca:
1. E. J. Bottani and J.M.D. Tascon (Editors), Adsorption by Carbons, Elsevier, Amsterdam, 2008.
2. R.T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons, Inc., Hoboken, 2003.
3. J.A. Moulijn, P.W.N.M. van Leeuwen and R.A. Santen (editors), Catalysis: An Integrated Approach to Homogeneous, Heterogeneous and Industrial Catalysis, Elsevier, Amsterdam, 1993.
4. J. M. Thomas, W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH, Weinheim, 1997.
5. R. Setton et al., Carbon Molecules and Related Materials, Taylor, Londyn, 2002.
6. H. Marsh, F. Rodriguez – Reinoso, Sciences of Carbon Materials, Alicante, 2000.
7. P.J.F. Harris, Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century, Cambridge University Press, 1999.
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: