Inorganic chemistry 0600-S1-O-CNORG
The aim of the course is to discuss chemical properties contemporary applications of the most important chemical elements and their compounds with an environmental and industrial perspective, to examine thermodynamical trends of redox processes, to relate the methods and techniques used for molecule structure determination.
Lecture
Origin and abundance of chemical elements in Universe and the Earth, chemical evolution of Universe, periodic table of the elements, structure of chemical compounds, application of spectroscopic methods in structure determination, thermodynamics, chemical kinetics and mechanisms of redox, substitution and acid-base processes. Chemistry of the s, p, d and f blocks elements.
Chemistry (occurrence and abundance, applications, biological and environmental importance, synthesis, physicochemical properties, review of the most important compounds and reactions) of 1-2, 13-18 groups elements with special attention focused on the chemistry of: hydrogen, boron and aluminium, carbon and silicon, nitrogen and phosphorus, oxygen, sulfur and chlorine. Coordination chemistry (main concepts, techniques) and review of properties, important reactions and applications of d-block elements.
Lanthanides and actinides - properties and contemporary uses of their compounds.
Organometallic chemistry selected topics.
Tutorials
Periodical table of the elements and their electronic structure, periodical changes of atomic properties of the elements: HOMO energy, electronegativity, atomic volume, s-p orbitals energy gap, the nomenclature of inorganic compounds, structure of covalent molecules (VSEPR), hybridization, valence state and the promotion energy of the valence state, structure of the molecules, LCAO MO.
Redox properties, Frost diagrams, the thermodynamic stability of the coordination compounds.
Laboratory
Synthesis, separation, purification, determination of the composition of chemical compounds of the s and p blocks elements and coordination compounds of d block metals.
Application of electronic spectroscopy for identification of coordination compounds. Optical properties of coordination compounds.
Total student workload
Learning outcomes - knowledge
Learning outcomes - skills
Learning outcomes - social competencies
Teaching methods
Observation/demonstration teaching methods
Expository teaching methods
- participatory lecture
- informative (conventional) lecture
Exploratory teaching methods
- laboratory
- practical
- experimental
Online teaching methods
Type of course
Prerequisites
Course coordinators
Term 2023/24: | Term 2022/23: |
Learning outcomes
Learning outcomes. At the end of the course the student should:
1.Have an appreciation of the similarities and the differences between the elements of s, p, d and f blocks;
2. Have knowledge of the effect of physical differences on the chemical properties of these elements;
3. Be able to understand why particular chemical bond occurs;
4. Be able to describe the main structural types;
5. Be able to construct LCAO MO diagrams, Frost diagrams and Walsh-Mullikan diagrams;
6. Have a knowledge of the most important contemporary applications of chemical compounds;
7. Have an appreciation of inorganic reaction mechanisms;
8. Be able to give examples from N2-fixation, O2(H2O2) oxidation etc.
9. Be able to synthezise i separate from reaction mixture simple inorganic compounds and coordination compounds, to exam their chemical and spectroscopic properties.
Assessment criteria
Written exam (65%), tutorials (15%), laboratory (20%).
Practical placement
None
Bibliography
1. N. N. Greendwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Elsevier 2006.
2. P. Atkins, T. Overton, J. Rourke, M.Weller, F. Armstrong, Shriver & Atkins Inorganic Chemistry, 5th ed., Oxford University Press 2010;
C. E. Housecroft, A. G. Sharpe, Inorganic Chemistry, 4th ed., Pearson 2012.
4. Journal of Chemical Education.
5. P. Kita, Inorganic Chemistry I. Lectures, materiały dydaktyczne przygotowane do projektu pn. „Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych” realizowanego w ramach Poddziałania 4.1.1. POKL, Toruń, 2011.
6. P. Kita, Inorganic Chemistry II. Lectures, materiały dydaktyczne przygotowane do projektu pn. „Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych” realizowanego w ramach Poddziałania 4.1.1. POKL, Toruń, 2015.
7. A. Katafias, A. Topolski, G. Wrzeszcz, J. Wiśniewska, Inorganic Chemistry – Laboratory, materiały dydaktyczne przygotowane do projektu pn. „Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych” realizowanego w ramach Poddziałania 4.1.1. POKL, Toruń, 2015.
8. P. Kita, Inorganic Chemistry I - Tutorials, materiały dydaktyczne przygotowane do projektu pn. „Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych” realizowanego w ramach Poddziałania 4.1.1. POKL, Toruń, 2011.
9. P. Kita, Inorganic Chemistry II - Tutorials, materiały dydaktyczne przygotowane do projektu pn. „Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych” realizowanego w ramach Poddziałania 4.1.1. POKL, Toruń, 2015.
Notes
Term 2022/23:
Due to the COVID-19 pandemic lectures and tutorials are presented on-line. |
Term 2023/24:
Due to the COVID-19 pandemic lectures and tutorials are presented on-line. |
Additional information
Additional information (registration calendar, class conductors, localization and schedules of classes), might be available in the USOSweb system: